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Summary 

Major trends recently occurred in the modern physics and applications of nonlinear optics are closely 
linked with the recent rapid technological advances in material science. These are engineering of material 
structures of nanometre scale length and novel concepts for tailoring their nonlinear response including 
substantial enhancement and tuning their nonlinearities. R&D in this subject area called nonlinear 
nanophotonics. Areas of application for this are enormous. Substantial progress is expected to happen and 
is also happening in more traditional areas of R&D in nonlinear optics, such as highly efficient nonlinear 
frequency conversion (harmonics generation, up- and downconversion, supercontinuum generation, etc.) 
in smaller size devices such as photonics crystal structures, carbon nanotubes and graphene. Evidently all 
such applications require an adequate theoretical support. The essential feature of the described above 
structures is their spatial scale length which is smaller than radiation wavelength. This property is 
however not described by the Bloembergen’s iconic nonlinear optical wave equation (NOWE) which is 
only valid for macroscopically homogeneous media.  

In this work a theoretical formulism is developed for optical wave linear and nonlinear propagation 
and interaction in materials with intrinsic or induced macroscopic spatial inhomegeneity. This formulism 
has emerged from continuation and further development of the theory of light scattering by Einstein and 
by Landau and Lifshitz. The obtained optical wave equation (OWE) is applicable to variety linear and 
nonlinear optical interactions in spatially inhomogeneous media. While it is valid regardless of the spatial 
scale of these inhomogeneities, it explicitly shows that the strongest contribution is expected from 
inhomogeneities of a sub-wavelength scale size, typical for nanostructured optical media. Therefore the 
obtained equation is laying a more rigorous theoretical basis for the rapidly growing activity worldwide in 
studies of nanophotonic systems. 
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1. Introduction. 
 
Phenomena of light propagation and interaction in an optically transparent nonmagnetic continuous 
medium is the subject area of the macroscopic electrodynamics [1,2]. For the majority of these 
phenomena the medium can be reasonably well approximated as the spatially homogeneous one. 
Respectively their theoretical description is based on OWE obtained in the approximation of 
macroscopically homogeneous medium [2,3]. On the other hand there are plenty of phenomena in optics 
which are inevitably associated with medium’s inhomogeneites. Historically first one, Rayleigh scattering, 
was investigated more than a century ago by Tyndall (1869) and Lord Rayleigh (1899), who the attributed 
phenomenon to sub-wavelength size particles (macroscopic inhomogeneities of the refractive index) in a 
visually transparent medium. Later, through the XX century, a variety of linear and nonlinear optical 
phenomena were discovered and studied, in which macroscopic spatial inhomogeneity of the medium is 
the integral part of physics behind the phenomenon. Among these are a range of spontaneous and 
stimulated scattering phenomena, static and dynamic holography (including Bragg gratings), four wave 
mixing, etc. Most recently, mainly in the XXI century, the attention turned to optical phenomena in micro- 
and nanostructured media (photonic crystals, randomly and regularly distributed in space nanoscale size 
objects (particles, rods, rings, etc.). Our analysis of publications on studies of these phenomena have 
revealed that their theoretical description is using the OWE for macroscopically homogeneous media, [4], 
or based on various heuristic approaches. In this work an attempt is made to rigorously consider in OWE 
the effect of the medium’s spatial inhomogeneity. 

 
2. Historical background 
 
2a). Einstein’s approach 

 
Probably the first attempt to obtain OWE for macroscopically inhomogeneous media was made by 

Einstein [5]. Einstein’s procedure of obtaining the equation is as follows. If the incident light is a quasi-
monochromatic electro-magnetic (EM) wave with the central frequency , an optically transparent 
nonmagnetic ( = 1) medium can then be characterised by the correspondent to that frequency 
permittivity . The permittivity of an optically isotropic inhomogeneous medium is supposed to be the 
sum of a background homogeneous part, 0, and of a spatially modulated part r),  
 

)()( 0 rr   .     (1) 

 
Macroscopic electric, E


, and magnetic, H


, fields of optical radiation at each point of the medium 

are governed by the macroscopic Maxwell equations,  
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where c is the velocity of light and D


 is the electric induction which is coupled with the electric field, 
E


, through the relation 
 

ED


 .      (6) 
 
Using the standard procedure of exclusion of the magnetic field, H


, one can convert Eqs (2) and (3) to 

the wave equation for the electric field,  
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which, along with Eqs(4) and (6), describe propagation of an EM wave in a dielectric medium.  

In an optically inhomogeneous medium the electric field of the optical wave, 
pE


, which is 

propagating in the direction of the incident to that medium optical wave, differs from the electric field of 
the incident wave, E


, by a field of the scattered wave, SE


, so, the total electric field in the medium is  

 

Sp EEE


 .      (8) 

 
When (r) and SE


 are infinitesimal compared to 0 and 

pE


, Eq.(7) can be split to two coupled 

equations for 
pE


 and for SE


, the latter of which is 

 

0
1

2

2

2






t

D

c
E S

S




,     (9) 

with  
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and the equation for 
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 is 
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with  
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Small terms of the second order were neglected in obtaining Eqs (9)-(12). This in particular means that 
propagation of the pump field, 

pE


, is governed by the optical wave equation, Eq.(11), with a constant 

background permittivity, 0. 

Substituting Eq.(10) into Eqs (4) and (9) and taking into account that FFF


2)(   
converts the equations for the scattered field to the form, 
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Using Eq.(14) and taking into account that  FFF


)( , [6], 0 pE


 and 00    

Einstein obtained the expression for 
SE


 ,  
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substitution of which into Eq.(13) has given his working OWE for the scattered field, 
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in which the first term on the RHS is proportional to  , that is it explicitly accounts the effect of 
spatial variation of , while the second term is proportional to the magnitude of  showing that it is 
independent of the rate of its spatial variation.  

Analysing this equation Einstein has however noted that the first term on the RHS of Eq.(16) is 
actually generating a longitudinal electric field, which cannot contribute to the scattered field, 
propagation of which is described by the LHS of this equation. Moreover he has found that its 
contribution is compensated by the longitudinal component from the second term, [5]. Consequently the 
wave equation for the scattered field acquires the form, 
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where the symbol  on the RHS bears witness to the fact that only transverse components of the 
expression in the brackets are contributing to the field SE


 on the LHS.  

Evidently the RHS of Eq.(17) does not have terms accounting the effect of any kind of spatial 
variation of�. As such in its very essence it describes the scattered signal as a secondary emission of 
the deviations r) regardless of the rate of spatial variation of these deviations, that is the scattering in 
spatially homogeneous media too. Obviously this is in direct contradiction with the basic physics of the 
Rayleigh scattering phenomenon introduced/considered by Tyndall (1869) and Lord Rayleigh (1899) 
which explicitly demonstrate dependence of scattering characteristics on the size of inhomogeneities.  

The form Eq.(17) is fully consistent with the iconic NOWE, which was obtained by Bloembergen 
with colleagues for the case of optically homogeneous media [3]. The only difference is that in NOWE 
 is dependent of the optical field(s).  

Obviously an alternative approach is required to obtain OWE for describing the effect(s) in optically 
inhomogeneous media. Since we are interested in accounting for the spatial effect, it can be done through 
the term in the wave equation for the scattered field, Eq.(9), with spatial derivatives only.  

 
2b). Landau’s approach 

 
The way to do this is actually described in [1]. Instead of replacing SD


 in Eq.(9), as it was done by 

Einstein, Landau and Lifshitz (L&L) replaced SE


 under (  ) by  
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which follows from Eq.(10). Then in the approximation of monochromatic incident and scattered waves 
they got the equation for the induction of the scattered radiation, SD


, 
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Equation (19) was solved and analysed in [1] to elucidate various properties of the intensity, IS = |ES|2, of 
scattered radiation in various media.  

Interestingly but in spite of essential difference between the RHSs of Eqs (17) and (19), the 
calculated by both Einstein in [5] and L&L in [1] the integral extinction coefficient due to Rayleigh 
scattering coincide. Probably because of this coincidence the difference between the two approaches was 
not considered so far. 
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3. OWE for spatially inhomogeneous media 
 
To understand, clarify and appreciate the actual value of L&L approach and its difference from 
Einstein’s approach we firstly must consider the cases in similar approximations. We consider the 
interaction of quasi-monochromatic quasi-plane incident and scattered waves as a more general 
approximation compared to the case of interaction of monochromatic plane waves considered in [1]. 

In this approximation by substitution of SE


 into the first term on the LHS of Eq.(9) we shall get the 

equation for the induction of the scattered radiation, 
SD


, in the form 
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Since the electric field is scattered radiation is must be transverse and it is conventionally detected at 

large enough distance from the scattering region, SD


 is related to SE


 there as SD


 = SE


0 , and Eq.(20) 

transforms to  
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Here again on the RHS we should consider the contributions from its transverse components only. 

 
3a). OWE for scattering from a scalar type spatial inhomogeneities 

 
To compare Eqs (17) and (21) consider scattering of a quasi-monochromatic plane wave, 

)(),(),( zkti
pp

ppetztrE  
, (here ),( tzp


 is the slowly varying in space and time amplitude of that wave) 

as an incident field in a medium where r) is an independent of time scalar function of spatial 
coordinates. In such case, by using the properties of the del operator, , FFF


 )()( , 

)()()()(][ FGGFGFFGGF


  and 0)(   (see Section 5.5 in [6]), we shall get 
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By taking into account that 

pE


 is a transverse electric field of the incident radiation, for which according 

to Eq.(11) we have 
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Eq.(22) can be rewritten as 
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Substituting Eq.(24) into Eq.(21) we obtain the equation for the scattered field, 
 

].)()()([
1 2

0
2

2

22

2

2
02

pppp
pS

S EEEE
t

E

ct

E

c
E















 


  (25) 

 

Distribution A:  Approved for public release; distribution is unlimited.



 8

It’s easy to see that the first term on the RHS of Eq.(25) coincides with the RHS of Einstein’s equation, 
Eq.(17). The remaining chain of four terms on the RHS of Eq.(25) is new to the theory of wave 
propagation in optical media, and these are representing a specific contribution of a medium’s 
macroscopic spatial inhomogeneity.  
 
3b). OWE for backscattering from a periodic spatial inhomogeneity 

 
Consider then the case when the incident radiation is a plane wave of the frequency p with the 

wavevector kp, which is propagating along +z,  
 

)(),( zkti
pp

ppetrE  
,      (26) 

 
and r) is a periodic grating with the wavevector q also along +z, 
 

iqzezz )()(   .      (27) 
 
In such case the scattered radiation is also a plane wave of the frequency S = p with the wavevector kS 
= kp + q, the last two terms on the RHS of Eq.(26) are zeros and the equation transforms to  
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This to be compared with the result of substitution Eqs (26) and (27) into Eq.(17). Obviously the first 
term on the RHS of this equation is zero, and therefore equation for the scattered field reduces to  
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The difference is clear: the RHS of Eq.(28) has two terms which explicitly depend on the rate of 

spatial variation of , that is on q. It reduces to Einstein’s equation for the scattered field when the 
medium is macroscopically homogeneous that is when the characteristic size of inhomogeneites a  q-1 
 ∞ (q  0) or when (r) is a slowly enough varying on r function, a >> p (p = 2n/kp is the 
wavelength of the incident radiation and n is the refractive index). When q  or  kp the contribution of 
the last two terms on the RHS of Eq.(28) can be not small. In particular when q = 2kp (this case is a 
typical for the Rayleigh and Brillouin backscattering and for the Bragg grating backreflection) the 
contribution from the last two terms is 6 times bigger than form the first one.  

Clearly the difference is much more pronounced when a << p. That case is typical for 
nanostructured media, where a are conventionally in the range from ~100 nm to ~1000 nm. This 
circumstance in particular would allow account for a substantial inconsistency between experimental 
observations of some phenomena in nanostructured materials and their theoretical description in frames 
of the existing theory [7]. In such media the second terms on the RHS of Eq.(28) and of Eq.(25) are 
dominating over all other. An important result of this is essential simplification of the equations, 
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which is obviously useful for practice.  
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3c). Generalisation of the new OWE 
Obviously  in a medium can vary in both space and time, ),( tr . Then scattering of an incident 

EM wave in an inhomogeneous medium is the appearance in it of EM waves, not only directions but also 
frequencies of which not coincide with these of the original incident wave [1]. Then numerous, mostly 
nonlinear, optical phenomena, which conventionally were not considered being scattering, can be 
understood and treated as scattering. Harmonics generation, self- and cross-phase modulation, various 
parametric processes, four-wave mixing, etc. are among such phenomena.  

In the most general case  in a medium is a tensor, ),(ˆ tr . In this case ][ pE


  in Eqs (21) and (25) 

has to be a vector whose components are [ik(r,t)Ek], where ik(r,t) and Ek are the components of the 
medium’s permittivity tensor and of the pump field [1]. A variation of permittivity can be imprinted 
(linear scattering) or induced by the incident optical radiation (nonlinear scattering) in the medium, i.e. 

 

),(ˆ),(ˆ),(ˆ trtrtr NLL   ,      (32) 

 
where ),(ˆ trL  and ),(ˆ trNL  are the linear and nonlinear parts of the medium’s permittivity. When 

NL(r,t) is negligible Eq.(25) is describing linear light scattering and Bragg reflection without and/or with 
(when L(r,t) is dependant of time) change of the frequency spectrum (broadening and/or shift). When 
NL(r,t) is not small Eq.(25) describes a range of nonlinear optical phenomena when the medium is 
induced to be macroscopically inhomogeneous (for example stimulated scattering phenomena). Thus 
Eq.(25) with Eq.(32) is the generalization of the iconic NOWE obtained in [3], for light-matter 
interactions in macroscopically inhomogeneous media.  
 
4. Conclusions 
 
A novel optical wave equation is developed for optical wave propagation and interaction in materials with 
intrinsic or induced macroscopic spatial inhomegeneity. It shows that the effect of spatial inhomogeneity 
is most pronounced for sizes of inhomogeneities on a sub-wavelength scale, that is in materials 
commonly referred to as nanophotonic materials. Respectively the new equation provides a rigorous 
theoretical template for emerging experimental activity worldwide in the area of linear and nonlinear 
nanophotonics.  
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List of Symbols, Abbreviations, and Acronyms  

r and t   the space(position) and time variables 
   -   the frequency of optical radiation 
   -   the medium’s permittivity  
   -   the medium’s permeability 
0   -   the background homogeneous part of the medium’s permittivity 
r)   -   spatially modulated part of the medium’s permittivity 
E


   -   the macroscopic electric field of an optical radiation wave 
H


   -   the macroscopic magnetic field of an optical radiation wave 
D


   -   the electric induction 
   -   the del operator 

pE


   -   the field of the optical wave propagating in the direction of the incident radiation 

SE


   -   the field of the scattered wave 

pD


   -   the electric induction of the wave propagating in the direction of the incident radiation 

SD


   -   the electric induction of the scattered wave 

F


   -   a vector function of the position 
    -   a scalar function of the position 
   -   the symbol denoting the transverse components 
IS   -   the intensity of scattered radiation 

),( tzp


   -   the slowly varying in space and time amplitude of 
pE


 

p   -   the frequency of the field 
pE


 

kp   -   the wavevector of the field 
pE


 

+z   -   the direction of the incident radiation propagation 
)(z    -   the slowly varying along z amplitude of z) 

q   -   the wavevector of the grating of z) 
S   -   the frequency of the scattered radiation  
kS   -   the wavevector of the scattered radiation 
a   -   the characteristic size of inhomogeneites  
p   -   the wavelength of the incident radiation 
n   -   the refractive index 

),(ˆ tr    -   the tensor of medium’s permittivity. 

),(ˆ trL  and ),(ˆ trNL    -   the linear and nonlinear parts of the medium’s permittivity tensor 

ik(r,t) and Ek   -   the components of the medium’s permittivity tensor and of the incident field 
OWE   -   optical wave equation  
R&D   -   research and development 
NOWE   -   nonlinear optical wave equation  
EM wave   -   electro-magnetic wave 
RHS   -   right hand side 
LHS   -   left hand side 
L&L   -   Landau and Lifshitz  
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